PowerSystems.Branch Formulations

Note

The use of reactive power variables and constraints will depend on the network model used, i.e., whether it uses (or does not use) reactive power. If the network model is purely active power-based, reactive power variables and related constraints are not created.

Table of contents

  1. StaticBranch
  2. StaticBranchBounds
  3. StaticBranchUnbounded
  4. HVDCTwoTerminalUnbounded
  5. HVDCTwoTerminalLossless
  6. HVDCTwoTerminalDispatch
  7. PhaseAngleControl
  8. Valid configurations

StaticBranch

Formulation valid for PTDFPowerModel Network model

Variables:

Static Parameters

  • $R^\text{max}$ = PowerSystems.get_rating(branch)

Objective:

Add a large proportional cost to the objective function if rate constraint slack variables are used $+ (f^\text{sl,up} + f^\text{sl,lo}) \cdot 2 \cdot 10^5$

Expressions:

No expressions are used.

Constraints:

For each branch $b \in \{1,\dots, B\}$ (in a system with $N$ buses) the constraints are given by:

\[\begin{aligned} & f_t = \sum_{i=1}^N \text{PTDF}_{i,b} \cdot \text{Bal}_{i,t}, \quad \forall t \in \{1,\dots, T\}\\ & f_t - f_t^\text{sl,up} \le R^\text{max},\quad \forall t \in \{1,\dots, T\} \\ & f_t + f_t^\text{sl,lo} \ge -R^\text{max},\quad \forall t \in \{1,\dots, T\} \end{aligned}\]

on which $\text{PTDF}$ is the $N \times B$ system Power Transfer Distribution Factors (PTDF) matrix, and $\text{Bal}_{i,t}$ is the active power bus balance expression (i.e. $\text{Generation}_{i,t} - \text{Demand}_{i,t}$) at bus $i$ at time-step $t$.

StaticBranchBounds

Formulation valid for PTDFPowerModel Network model

Variables:

Static Parameters

  • $R^\text{max}$ = PowerSystems.get_rating(branch)

Objective:

No cost is added to the objective function.

Expressions:

No expressions are used.

Constraints:

For each branch $b \in \{1,\dots, B\}$ (in a system with $N$ buses) the constraints are given by:

\[\begin{aligned} & f_t = \sum_{i=1}^N \text{PTDF}_{i,b} \cdot \text{Bal}_{i,t}, \quad \forall t \in \{1,\dots, T\} \end{aligned}\]

on which $\text{PTDF}$ is the $N \times B$ system Power Transfer Distribution Factors (PTDF) matrix, and $\text{Bal}_{i,t}$ is the active power bus balance expression (i.e. $\text{Generation}_{i,t} - \text{Demand}_{i,t}$) at bus $i$ at time-step $t$.

StaticBranchUnbounded

Formulation valid for PTDFPowerModel Network model

Objective:

No cost is added to the objective function.

Expressions:

No expressions are used.

Constraints:

For each branch $b \in \{1,\dots, B\}$ (in a system with $N$ buses) the constraints are given by:

\[\begin{aligned} & f_t = \sum_{i=1}^N \text{PTDF}_{i,b} \cdot \text{Bal}_{i,t}, \quad \forall t \in \{1,\dots, T\} \end{aligned}\]

on which $\text{PTDF}$ is the $N \times B$ system Power Transfer Distribution Factors (PTDF) matrix, and $\text{Bal}_{i,t}$ is the active power bus balance expression (i.e. $\text{Generation}_{i,t} - \text{Demand}_{i,t}$) at bus $i$ at time-step $t$.

HVDCTwoTerminalUnbounded

Formulation valid for PTDFPowerModel Network model

This model assumes that it can transfer power from two AC buses without losses and no limits.

Variables:

Objective:

No cost is added to the objective function.

Expressions:

The variable FlowActivePowerVariable $f$ is added to the nodal balance expression ActivePowerBalance, by adding the flow $f$ in the receiving bus and subtracting it from the sending bus. This is used then to compute the AC flows using the PTDF equation.

Constraints:

No constraints are added.

HVDCTwoTerminalLossless

Formulation valid for PTDFPowerModel Network model

This model assumes that it can transfer power from two AC buses without losses.

Variables:

Static Parameters

  • $R^\text{from,min}$ = PowerSystems.get_active_power_limits_from(branch).min
  • $R^\text{from,max}$ = PowerSystems.get_active_power_limits_from(branch).max
  • $R^\text{to,min}$ = PowerSystems.get_active_power_limits_to(branch).min
  • $R^\text{to,max}$ = PowerSystems.get_active_power_limits_to(branch).max

Objective:

No cost is added to the objective function.

Expressions:

The variable FlowActivePowerVariable $f$ is added to the nodal balance expression ActivePowerBalance, by adding the flow $f$ in the receiving bus and subtracting it from the sending bus. This is used then to compute the AC flows using the PTDF equation.

Constraints:

\[\begin{align*} & R^\text{min} \le f_t \le R^\text{max},\quad \forall t \in \{1,\dots, T\} \\ \end{align*}\]

where:

\[\begin{align*} & R^\text{min} = \begin{cases} \min\left(R^\text{from,min}, R^\text{to,min}\right), & \text{if } R^\text{from,min} \ge 0 \text{ and } R^\text{to,min} \ge 0 \\ \max\left(R^\text{from,min}, R^\text{to,min}\right), & \text{if } R^\text{from,min} \le 0 \text{ and } R^\text{to,min} \le 0 \\ R^\text{from,min},& \text{if } R^\text{from,min} \le 0 \text{ and } R^\text{to,min} \ge 0 \\ R^\text{to,min},& \text{if } R^\text{from,min} \ge 0 \text{ and } R^\text{to,min} \le 0 \end{cases} \end{align*}\]

and

\[\begin{align*} & R^\text{max} = \begin{cases} \min\left(R^\text{from,max}, R^\text{to,max}\right), & \text{if } R^\text{from,max} \ge 0 \text{ and } R^\text{to,max} \ge 0 \\ \max\left(R^\text{from,max}, R^\text{to,max}\right), & \text{if } R^\text{from,max} \le 0 \text{ and } R^\text{to,max} \le 0 \\ R^\text{from,max},& \text{if } R^\text{from,max} \le 0 \text{ and } R^\text{to,max} \ge 0 \\ R^\text{to,max},& \text{if } R^\text{from,max} \ge 0 \text{ and } R^\text{to,max} \le 0 \end{cases} \end{align*}\]

HVDCTwoTerminalDispatch

Formulation valid for PTDFPowerModel Network model

Variables

Static Parameters

  • $R^\text{from,min}$ = PowerSystems.get_active_power_limits_from(branch).min
  • $R^\text{from,max}$ = PowerSystems.get_active_power_limits_from(branch).max
  • $R^\text{to,min}$ = PowerSystems.get_active_power_limits_to(branch).min
  • $R^\text{to,max}$ = PowerSystems.get_active_power_limits_to(branch).max
  • $L_0$ = PowerSystems.get_loss(branch).l0
  • $L_1$ = PowerSystems.get_loss(branch).l1

Objective:

No cost is added to the objective function.

Expressions:

Each FlowActivePowerToFromVariable $f^\text{to-from}$ and FlowActivePowerFromToVariable $f^\text{from-to}$ is added to the nodal balance expression ActivePowerBalance, by adding the respective flow in the receiving bus and subtracting it from the sending bus. That is, $f^\text{to-from}$ adds the flow to the from bus, and subtracts the flow from the to bus, while $f^\text{from-to}$ adds the flow to the to bus, and subtracts the flow from the from bus This is used then to compute the AC flows using the PTDF equation.

In addition, the HVDCLosses are subtracted to the from bus in the ActivePowerBalance expression.

Constraints:

\[\begin{align*} & R^\text{from,min} \le f_t^\text{from-to} \le R^\text{from,max}, \forall t \in \{1,\dots, T\} \\ & R^\text{to,min} \le f_t^\text{to-from} \le R^\text{to,max},\quad \forall t \in \{1,\dots, T\} \\ & f_t^\text{to-from} - f_t^\text{from-to} \le L_1 \cdot f_t^\text{to-from} - L_0,\quad \forall t \in \{1,\dots, T\} \\ & f_t^\text{from-to} - f_t^\text{to-from} \ge L_1 \cdot f_t^\text{from-to} + L_0,\quad \forall t \in \{1,\dots, T\} \\ & f_t^\text{from-to} - f_t^\text{to-from} \ge - M^\text{big} (1 - u^\text{dir}_t),\quad \forall t \in \{1,\dots, T\} \\ & f_t^\text{to-from} - f_t^\text{from-to} \ge - M^\text{big} u^\text{dir}_t,\quad \forall t \in \{1,\dots, T\} \\ & f_t^\text{to-from} - f_t^\text{from-to} \le \ell_t,\quad \forall t \in \{1,\dots, T\} \\ & f_t^\text{from-to} - f_t^\text{to-from} \le \ell_t,\quad \forall t \in \{1,\dots, T\} \end{align*}\]

PhaseAngleControl

Formulation valid for PTDFPowerModel Network model

Variables:

Static Parameters

  • $R^\text{max}$ = PowerSystems.get_rating(branch)
  • $\Theta^\text{min}$ = PowerSystems.get_phase_angle_limits(branch).min
  • $\Theta^\text{max}$ = PowerSystems.get_phase_angle_limits(branch).max
  • $X$ = PowerSystems.get_x(branch) (series reactance)

Objective:

No changes to objective function

Expressions:

Adds to the ActivePowerBalance expression the term $-\theta^\text{shift} /X$ to the from bus and $+\theta^\text{shift} /X$ to the to bus, that the PhaseShiftingTransformer is connected.

Constraints:

For each branch $b \in \{1,\dots, B\}$ (in a system with $N$ buses) the constraints are given by:

\[\begin{aligned} & f_t = \sum_{i=1}^N \text{PTDF}_{i,b} \cdot \text{Bal}_{i,t} + \frac{\theta^\text{shift}_t}{X}, \quad \forall t \in \{1,\dots, T\}\\ & -R^\text{max} \le f_t \le R^\text{max},\quad \forall t \in \{1,\dots, T\} \end{aligned}\]

on which $\text{PTDF}$ is the $N \times B$ system Power Transfer Distribution Factors (PTDF) matrix, and $\text{Bal}_{i,t}$ is the active power bus balance expression (i.e. $\text{Generation}_{i,t} - \text{Demand}_{i,t}$) at bus $i$ at time-step $t$.

Valid configurations

Valid DeviceModels for subtypes of Branch include the following:

Valid DeviceModelDevice TypeFormulation
DeviceModel(PhaseShiftingTransformer, PhaseAngleControl)PhaseShiftingTransformerPhaseAngleControl
DeviceModel(TwoTerminalHVDCLine, HVDCTwoTerminalDispatch)TwoTerminalHVDCLineHVDCTwoTerminalDispatch
DeviceModel(TwoTerminalVSCDCLine, HVDCTwoTerminalDispatch)TwoTerminalVSCDCLineHVDCTwoTerminalDispatch
DeviceModel(TwoTerminalHVDCLine, HVDCTwoTerminalLossless)TwoTerminalHVDCLineHVDCTwoTerminalLossless
DeviceModel(TwoTerminalVSCDCLine, HVDCTwoTerminalLossless)TwoTerminalVSCDCLineHVDCTwoTerminalLossless
DeviceModel(TwoTerminalHVDCLine, HVDCTwoTerminalUnbounded)TwoTerminalHVDCLineHVDCTwoTerminalUnbounded
DeviceModel(TwoTerminalVSCDCLine, HVDCTwoTerminalUnbounded)TwoTerminalVSCDCLineHVDCTwoTerminalUnbounded
DeviceModel(TwoTerminalHVDCLine, PowerSimulations.HVDCTwoTerminalPiecewiseLoss)TwoTerminalHVDCLinePowerSimulations.HVDCTwoTerminalPiecewiseLoss
DeviceModel(TwoTerminalVSCDCLine, PowerSimulations.HVDCTwoTerminalPiecewiseLoss)TwoTerminalVSCDCLinePowerSimulations.HVDCTwoTerminalPiecewiseLoss
DeviceModel(Line, StaticBranch)LineStaticBranch
DeviceModel(MonitoredLine, StaticBranch)MonitoredLineStaticBranch
DeviceModel(PhaseShiftingTransformer, StaticBranch)PhaseShiftingTransformerStaticBranch
DeviceModel(TapTransformer, StaticBranch)TapTransformerStaticBranch
DeviceModel(Transformer2W, StaticBranch)Transformer2WStaticBranch
DeviceModel(TwoTerminalHVDCLine, StaticBranch)TwoTerminalHVDCLineStaticBranch
DeviceModel(TwoTerminalVSCDCLine, StaticBranch)TwoTerminalVSCDCLineStaticBranch
DeviceModel(AreaInterchange, StaticBranch)AreaInterchangeStaticBranch
DeviceModel(Line, StaticBranchBounds)LineStaticBranchBounds
DeviceModel(MonitoredLine, StaticBranchBounds)MonitoredLineStaticBranchBounds
DeviceModel(PhaseShiftingTransformer, StaticBranchBounds)PhaseShiftingTransformerStaticBranchBounds
DeviceModel(TapTransformer, StaticBranchBounds)TapTransformerStaticBranchBounds
DeviceModel(Transformer2W, StaticBranchBounds)Transformer2WStaticBranchBounds
DeviceModel(TwoTerminalHVDCLine, StaticBranchBounds)TwoTerminalHVDCLineStaticBranchBounds
DeviceModel(TwoTerminalVSCDCLine, StaticBranchBounds)TwoTerminalVSCDCLineStaticBranchBounds
DeviceModel(Line, StaticBranchUnbounded)LineStaticBranchUnbounded
DeviceModel(MonitoredLine, StaticBranchUnbounded)MonitoredLineStaticBranchUnbounded
DeviceModel(PhaseShiftingTransformer, StaticBranchUnbounded)PhaseShiftingTransformerStaticBranchUnbounded
DeviceModel(TapTransformer, StaticBranchUnbounded)TapTransformerStaticBranchUnbounded
DeviceModel(Transformer2W, StaticBranchUnbounded)Transformer2WStaticBranchUnbounded
DeviceModel(TwoTerminalHVDCLine, StaticBranchUnbounded)TwoTerminalHVDCLineStaticBranchUnbounded
DeviceModel(TwoTerminalVSCDCLine, StaticBranchUnbounded)TwoTerminalVSCDCLineStaticBranchUnbounded
DeviceModel(AreaInterchange, StaticBranchUnbounded)AreaInterchangeStaticBranchUnbounded