API Reference
- API Reference
Device Models
List of structures and methods for Device models
PowerSimulations.DeviceModel
— TypeDeviceModel(
::Type{D},
::Type{B},
feedforwards::Vector{<:AbstractAffectFeedforward}
use_slacks::Bool,
duals::Vector{DataType},
services::Vector{ServiceModel}
attributes::Dict{String, Any}
)
Establishes the model for a particular device specified by type. Uses the keyword argument feedforward to enable passing values between operation model at simulation time
Arguments
::Type{D} where D<:PSY.Device
: Power System Device Type::Type{B} where B<:AbstractDeviceFormulation
: Abstract Device Formulationfeedforward::Array{<:AbstractAffectFeedforward} = Vector{AbstractAffectFeedforward}()
: use to pass parameters between modelsuse_slacks::Bool = false
: Add slacks to the device model. Implementation is model dependent and not all models feature slacksduals::Vector{DataType} = Vector{DataType}()
: use to pass constraint type to calculate the duals. The DataType needs to be a valid ConstraintTypetime_series_names::Dict{Type{<:TimeSeriesParameter}, String} = get_default_time_series_names(D, B)
: use to specify time series names associated to the device`attributes::Dict{String, Any} = get_default_attributes(D, B)
: use to specify attributes to the device
Example
thermal_gens = DeviceModel(ThermalStandard, ThermalBasicUnitCommitment)
Formulations
Refer to the Formulations Page for each Abstract Device Formulation.
Problem Templates
PowerSimulations.ProblemTemplate
— TypeProblemTemplate(::Type{T}) where {T<:PM.AbstractPowerFormulation}
Creates a model reference of the PowerSimulations Optimization Problem.
Arguments
model::Type{T<:PM.AbstractPowerFormulation}
:
Example
template = ProblemTemplate(CopperPlatePowerModel)
PowerSimulations.set_device_model!
— Methodset_device_model!(
template::ProblemTemplate,
model::DeviceModel
)
Sets the device model in a template using a DeviceModel instance
PowerSimulations.set_device_model!
— Methodset_device_model!(
template::ProblemTemplate,
component_type::Type{<:Device},
formulation::Type{<:PowerSimulations.AbstractDeviceFormulation}
)
Sets the device model in a template using the component type and formulation. Builds a default DeviceModel
PowerSimulations.set_network_model!
— Methodset_network_model!(
template::ProblemTemplate,
model::NetworkModel
)
Sets the network model in a template.
PowerSimulations.set_service_model!
— Methodset_service_model!(
template::ProblemTemplate,
service_name::String,
service_type::Type{<:Service},
formulation::Type{<:PowerSimulations.AbstractServiceFormulation}
)
Sets the service model in a template using a name and the service type and formulation. Builds a default ServiceModel with useservicename set to true.
PowerSimulations.set_service_model!
— Methodset_service_model!(
template::ProblemTemplate,
service_type::Type{<:Service},
formulation::Type{<:PowerSimulations.AbstractServiceFormulation}
)
Sets the service model in a template using a ServiceModel instance.
PowerSimulations.template_economic_dispatch
— Methodtemplate_economic_dispatch(; kwargs...) -> ProblemTemplate
template_economic_dispatch(; kwargs...)
Creates a ProblemTemplate
with default DeviceModels for an Economic Dispatch problem.
Example
template = templateeconomicdispatch()
# Accepted Key Words
- `network::Type{<:PM.AbstractPowerModel}` : override default network model settings
- `devices::Vector{DeviceModel}` : override default `DeviceModel` settings
- `services::Vector{ServiceModel}` : override default `ServiceModel` settings
PowerSimulations.template_unit_commitment
— Methodtemplate_unit_commitment(; kwargs...) -> ProblemTemplate
template_unit_commitment(; kwargs...)
Creates a ProblemTemplate
with default DeviceModels for a Unit Commitment problem.
Example
template = templateunitcommitment()
# Accepted Key Words
- `network::Type{<:PM.AbstractPowerModel}` : override default network model settings
- `devices::Vector{DeviceModel}` : override default `DeviceModel` settings
- `services::Vector{ServiceModel}` : override default `ServiceModel` settings
Decision Models
PowerSimulations.DecisionModel
— MethodDecisionModel(
directory::AbstractString,
optimizer::MathOptInterface.OptimizerWithAttributes;
jump_model,
system
) -> Any
Construct an DecisionProblem from a serialized file.
Arguments
directory::AbstractString
: Directory containing a serialized modeljump_model::Union{Nothing, JuMP.Model}
= nothing: The JuMP model does not get serialized. Callers should pass whatever they passed to the original problem.optimizer::Union{Nothing,MOI.OptimizerWithAttributes}
= nothing: The optimizer does not get serialized. Callers should pass whatever they passed to the original problem.system::Union{Nothing, PSY.System}
: Optionally, the system used for the model. If nothing and systofile was set to true when the model was created, the system will be deserialized from a file.
PowerSimulations.DecisionModel
— MethodDecisionModel{M}(
template::AbstractProblemTemplate,
sys::PSY.System,
jump_model::Union{Nothing, JuMP.Model}=nothing;
kwargs...) where {M<:DecisionProblem}
Build the optimization problem of type M with the specific system and template.
Arguments
::Type{M} where M<:DecisionProblem
: The abstract operation model typetemplate::AbstractProblemTemplate
: The model reference made up of transmission, devices, branches, and services.sys::PSY.System
: the system created using Power Systemsjump_model::Union{Nothing, JuMP.Model}
: Enables passing a custom JuMP model. Use with carename = nothing
: name of model, string or symbol; defaults to the type of template converted to a symbol.optimizer::Union{Nothing,MOI.OptimizerWithAttributes} = nothing
: The optimizer does not get serialized. Callers should pass whatever they passed to the original problem.horizon::Dates.Period = UNSET_HORIZON
: Manually specify the length of the forecast Horizonresolution::Dates.Period = UNSET_RESOLUTION
: Manually specify the model's resolutionwarm_start::Bool = true
: True will use the current operation point in the system to initialize variable values. False initializes all variables to zero. Default is truesystem_to_file::Bool = true:
: True to create a copy of the system used in the model.initialize_model::Bool = true
: Option to decide to initialize the model or not.initialization_file::String = ""
: This allows to pass pre-existing initialization values to avoid the solution of an optimization problem to find feasible initial conditions.deserialize_initial_conditions::Bool = false
: Option to deserialize conditionsexport_pwl_vars::Bool = false
: True to export all the pwl intermediate variables. It can slow down significantly the build and solve time.allow_fails::Bool = false
: True to allow the simulation to continue even if the optimization step fails. Use with care.optimizer_solve_log_print::Bool = false
: Uses JuMP.unset_silent() to print the optimizer's log. By default all solvers are set to MOI.Silent()detailed_optimizer_stats::Bool = false
: True to save detailed optimizer stats log.calculate_conflict::Bool = false
: True to use solver to calculate conflicts for infeasible problems. Only specific solvers are able to calculate conflicts.direct_mode_optimizer::Bool = false
: True to use the solver in direct mode. Creates a JuMP.direct_model.store_variable_names::Bool = false
: to store variable names in optimization model. Decreases the build times.rebuild_model::Bool = false
: It will force the rebuild of the underlying JuMP model with each call to update the model. It increases solution times, use only if the model can't be updated in memory.initial_time::Dates.DateTime = UNSET_INI_TIME
: Initial Time for the model solve.time_series_cache_size::Int = IS.TIME_SERIES_CACHE_SIZE_BYTES
: Size in bytes to cache for each time array. Default is 1 MiB. Set to 0 to disable.
Example
template = ProblemTemplate(CopperPlatePowerModel, devices, branches, services)
OpModel = DecisionModel(MockOperationProblem, template, system)
PowerSimulations.DecisionModel
— MethodDecisionModel(
::Type{M<:PowerSimulations.DecisionProblem},
template::PowerSimulations.AbstractProblemTemplate,
sys::System;
...
) -> DecisionModel
DecisionModel(
::Type{M<:PowerSimulations.DecisionProblem},
template::PowerSimulations.AbstractProblemTemplate,
sys::System,
jump_model::Union{Nothing, JuMP.Model};
kwargs...
) -> DecisionModel
Build the optimization problem of type M with the specific system and template
Arguments
::Type{M} where M<:DecisionProblem
: The abstract operation model typetemplate::AbstractProblemTemplate
: The model reference made up of transmission, devices, branches, and services.sys::PSY.System
: the system created using Power Systemsjump_model::Union{Nothing, JuMP.Model}
= nothing: Enables passing a custom JuMP model. Use with care.
Example
template = ProblemTemplate(CopperPlatePowerModel, devices, branches, services)
problem = DecisionModel(MyOpProblemType, template, system, optimizer)
PowerSimulations.DecisionModel
— MethodBuilds an empty decision model. This constructor is used for the implementation of custom decision models that do not require a template.
Arguments
::Type{M} where M<:DecisionProblem
: The abstract operation model typesys::PSY.System
: the system created using Power Systemsjump_model::Union{Nothing, JuMP.Model}
= nothing: Enables passing a custom JuMP model. Use with care.
Example
problem = DecisionModel(system, optimizer)
PowerSimulations.GenericOpProblem
— TypeGeneric PowerSimulations Operation Problem Type for unspecified models
PowerSimulations.build!
— Methodbuild!(
model::DecisionModel;
output_dir,
recorders,
console_level,
file_level,
disable_timer_outputs
)
Build the Decision Model based on the specified DecisionProblem.
Arguments
model::DecisionModel{<:DecisionProblem}
: DecisionModel objectoutput_dir::String
: Output directory for resultsrecorders::Vector{Symbol} = []
: recorder names to registerconsole_level = Logging.Error
:file_level = Logging.Info
:disable_timer_outputs = false
: Enable/Disable timing outputs
PowerSimulations.solve!
— Methodsolve!(
model::DecisionModel;
export_problem_results,
console_level,
file_level,
disable_timer_outputs,
export_optimization_problem,
kwargs...
) -> InfrastructureSystems.Simulation.RunStatusModule.RunStatus
Default solve method for models that conform to the requirements of DecisionModel{<: DecisionProblem}.
This will call build!
on the model if it is not already built. It will forward all keyword arguments to that function.
Arguments
model::OperationModel = model
: operation modelexport_problem_results::Bool = false
: If true, export OptimizationProblemResults DataFrames to CSV files. Reduces solution times during simulation.console_level = Logging.Error
:file_level = Logging.Info
:disable_timer_outputs = false
: Enable/Disable timing outputsexport_optimization_problem::Bool = true
: If true, serialize the model to a file to allow re-execution later.
Examples
results = solve!(OpModel)
results = solve!(OpModel, export_problem_results = true)
PowerSimulations.solve!
— Methodsolve!(
step::Int64,
model::DecisionModel,
start_time::Dates.DateTime,
store::PowerSimulations.SimulationStore;
exports
) -> InfrastructureSystems.Simulation.RunStatusModule.RunStatus
Default solve method for a DecisionModel used inside of a Simulation. Solves problems that conform to the requirements of DecisionModel{<: DecisionProblem}
Arguments
step::Int
: Simulation Stepmodel::OperationModel
: operation modelstart_time::Dates.DateTime
: Initial Time of the simulation step in Simulation time.store::SimulationStore
: Simulation output store
Accepted Key Words
exports
: realtime export of output. Use wisely, it can have negative impacts in the simulation times
Emulation Models
PowerSimulations.EmulationModel
— TypeEmulationModel{M}(
template::AbstractProblemTemplate,
sys::PSY.System,
jump_model::Union{Nothing, JuMP.Model}=nothing;
kwargs...) where {M<:EmulationProblem}
Build the optimization problem of type M with the specific system and template.
Arguments
::Type{M} where M<:EmulationProblem
: The abstract Emulation model typetemplate::AbstractProblemTemplate
: The model reference made up of transmission, devices, branches, and services.sys::PSY.System
: the system created using Power Systemsjump_model::Union{Nothing, JuMP.Model}
: Enables passing a custom JuMP model. Use with carename = nothing
: name of model, string or symbol; defaults to the type of template converted to a symbol.optimizer::Union{Nothing,MOI.OptimizerWithAttributes} = nothing
: The optimizer does not get serialized. Callers should pass whatever they passed to the original problem.warm_start::Bool = true
: True will use the current operation point in the system to initialize variable values. False initializes all variables to zero. Default is truesystem_to_file::Bool = true:
: True to create a copy of the system used in the model.initialize_model::Bool = true
: Option to decide to initialize the model or not.initialization_file::String = ""
: This allows to pass pre-existing initialization values to avoid the solution of an optimization problem to find feasible initial conditions.deserialize_initial_conditions::Bool = false
: Option to deserialize conditionsexport_pwl_vars::Bool = false
: True to export all the pwl intermediate variables. It can slow down significantly the build and solve time.allow_fails::Bool = false
: True to allow the simulation to continue even if the optimization step fails. Use with care.calculate_conflict::Bool = false
: True to use solver to calculate conflicts for infeasible problems. Only specific solvers are able to calculate conflicts.optimizer_solve_log_print::Bool = false
: Uses JuMP.unset_silent() to print the optimizer's log. By default all solvers are set to MOI.Silent()detailed_optimizer_stats::Bool = false
: True to save detailed optimizer stats log.direct_mode_optimizer::Bool = false
: True to use the solver in direct mode. Creates a JuMP.direct_model.store_variable_names::Bool = false
: True to store variable names in optimization model.rebuild_model::Bool = false
: It will force the rebuild of the underlying JuMP model with each call to update the model. It increases solution times, use only if the model can't be updated in memory.initial_time::Dates.DateTime = UNSET_INI_TIME
: Initial Time for the model solve.time_series_cache_size::Int = IS.TIME_SERIES_CACHE_SIZE_BYTES
: Size in bytes to cache for each time array. Default is 1 MiB. Set to 0 to disable.
Example
template = ProblemTemplate(CopperPlatePowerModel, devices, branches, services)
OpModel = EmulationModel(MockEmulationProblem, template, system)
PowerSimulations.EmulationModel
— MethodEmulationModel(
::Type{M<:PowerSimulations.EmulationProblem},
template::PowerSimulations.AbstractProblemTemplate,
sys::System;
...
) -> EmulationModel
EmulationModel(
::Type{M<:PowerSimulations.EmulationProblem},
template::PowerSimulations.AbstractProblemTemplate,
sys::System,
jump_model::Union{Nothing, JuMP.Model};
kwargs...
) -> EmulationModel
Build the optimization problem of type M with the specific system and template
Arguments
::Type{M} where M<:EmulationProblem
: The abstract Emulation model typetemplate::AbstractProblemTemplate
: The model reference made up of transmission, devices, branches, and services.sys::PSY.System
: the system created using Power Systemsjump_model::Union{Nothing, JuMP.Model}
: Enables passing a custom JuMP model. Use with care
Example
template = ProblemTemplate(CopperPlatePowerModel, devices, branches, services)
problem = EmulationModel(MyEmProblemType, template, system, optimizer)
PowerSimulations.EmulationModel
— MethodEmulationModel(
directory::AbstractString,
optimizer::MathOptInterface.OptimizerWithAttributes;
jump_model,
system,
kwargs...
) -> Any
Construct an EmulationProblem from a serialized file.
Arguments
directory::AbstractString
: Directory containing a serialized model.optimizer::MOI.OptimizerWithAttributes
: The optimizer does not get serialized. Callers should pass whatever they passed to the original problem.jump_model::Union{Nothing, JuMP.Model}
= nothing: The JuMP model does not get serialized. Callers should pass whatever they passed to the original problem.system::Union{Nothing, PSY.System}
: Optionally, the system used for the model. If nothing and systofile was set to true when the model was created, the system will be deserialized from a file.
PowerSimulations.build!
— Methodbuild!(
model::EmulationModel;
executions,
output_dir,
recorders,
console_level,
file_level,
disable_timer_outputs
)
Implementation of build for any EmulationProblem
PowerSimulations.run!
— Methodrun!(
model::EmulationModel;
export_problem_results,
console_level,
file_level,
disable_timer_outputs,
export_optimization_model,
kwargs...
) -> InfrastructureSystems.Simulation.RunStatusModule.RunStatus
Default run method for problems that conform to the requirements of EmulationModel{<: EmulationProblem}
This will call build!
on the model if it is not already built. It will forward all keyword arguments to that function.
Arguments
model::EmulationModel = model
: Emulation modeloptimizer::MOI.OptimizerWithAttributes
: The optimizer that is used to solve the modelexecutions::Int
: Number of executions for the emulator runexport_problem_results::Bool
: If true, export OptimizationProblemResults DataFrames to CSV files.output_dir::String
: Required if the model is not already built, otherwise ignoredenable_progress_bar::Bool
: Enables/Disable progress bar printingexport_optimization_model::Bool
: If true, serialize the model to a file to allow re-execution later.
Examples
status = run!(model; optimizer = HiGHS.Optimizer, executions = 10)
status = run!(model; output_dir = ./model_output, optimizer = HiGHS.Optimizer, executions = 10)
PowerSimulations.solve!
— Methodsolve!(
step::Int64,
model::EmulationModel,
start_time::Dates.DateTime,
store::PowerSimulations.SimulationStore;
exports
) -> InfrastructureSystems.Simulation.RunStatusModule.RunStatus
Default solve method for an EmulationModel used inside of a Simulation. Solves problems that conform to the requirements of DecisionModel{<: DecisionProblem}
Arguments
step::Int
: Simulation Stepmodel::OperationModel
: operation modelstart_time::Dates.DateTime
: Initial Time of the simulation step in Simulation time.store::SimulationStore
: Simulation output storeexports = nothing
: realtime export of output. Use wisely, it can have negative impacts in the simulation times
Service Models
List of structures and methods for Service models
PowerSimulations.ServiceModel
— TypeEstablishes the model for a particular services specified by type. Uses the keyword argument use_service_name
to assign the model to a service with the same name as the name in the template. Uses the keyword argument feedforward to enable passing values between operation model at simulation time
Arguments
-::Type{D}
: Power System Service Type -::Type{B}
: Abstract Service Formulation
Accepted Key Words
feedforward::Array{<:AbstractAffectFeedforward}
: use to pass parameters between modelsuse_service_name::Bool
: use the name as the name for the service
Example
reserves = ServiceModel(PSY.VariableReserve{PSY.ReserveUp}, RangeReserve)
Simulation Models
Refer to the Simulations Page to explanations on how to setup a Simulation, with Sequencing and Feedforwards.
PowerSimulations.InitialCondition
— TypeContainer for the initial condition data
PowerSimulations.SimulationModels
— TypeSimulationModels(
decision_models::Vector{<:DecisionModel},
emulation_models::Union{Nothing, EmulationModel}
)
Stores the OperationProblem definitions to be used in the simulation. When creating the SimulationModels, the order in which the models are created determines the order on which the simulation is executed.
Arguments
decision_models::Vector{<:DecisionModel}
: Vector of decision models.emulation_models::Union{Nothing, EmulationModel}
: Optional argument to include
an EmulationModel in the Simulation
Example
template_uc = template_unit_commitment()
template_ed = template_economic_dispatch()
my_decision_model_uc = DecisionModel(template_1, sys_uc, optimizer, name = "UC")
my_decision_model_ed = DecisionModel(template_ed, sys_ed, optimizer, name = "ED")
models = SimulationModels(
decision_models = [
my_decision_model_uc,
my_decision_model_ed
]
)
PowerSimulations.SimulationSequence
— TypeSimulationSequence(
models::SimulationModels,
feedforward::Dict{String, Vector{<:AbstractAffectFeedforward}}
ini_cond_chronology::InitialConditionChronology
)
Construct the simulation sequence between decision and emulation models.
Arguments
models::SimulationModels
: Vector of decisions and emulation models.feedforward = Dict{String, Vector{<:AbstractAffectFeedforward}}()
: Optional dictionary to specify how information and variables are exchanged between decision and emulation models.ini_cond_chronology::InitialConditionChronology = InterProblemChronology()
: Define information sharing model between stages withInterProblemChronology
Example
template_uc = template_unit_commitment()
template_ed = template_economic_dispatch()
my_decision_model_uc = DecisionModel(template_1, sys_uc, optimizer, name = "UC")
my_decision_model_ed = DecisionModel(template_ed, sys_ed, optimizer, name = "ED")
models = SimulationModels(
decision_models = [
my_decision_model_uc,
my_decision_model_ed
]
)
# The following sequence set the commitment variables (`OnVariable`) for `ThermalStandard` units from UC to ED.
sequence = SimulationSequence(;
models = models,
feedforwards = Dict(
"ED" => [
SemiContinuousFeedforward(;
component_type = ThermalStandard,
source = OnVariable,
affected_values = [ActivePowerVariable],
),
],
),
)
PowerSimulations.Simulation
— TypeSimulation(
sequence::SimulationSequence,
name::String,
steps::Int
models::SimulationModels,
simulation_folder::String,
initial_time::Union{Nothing, Dates.DateTime}
)
Construct the Simulation
structure to run the sequence of decision and emulation models specified.
Arguments
sequence::SimulationSequence
: Simulation sequence that specify how the decision and emulation models will be executed.name::String
: Name of the Simulationsteps::Int
: Number of steps on which the sequence of models will be executedmodels::SimulationModels
: List of Decision and Emulation Modelssimulation_folder::String
: Folder on which results will be storedinitial_time::Union{Nothing, Dates.DateTime} = nothing
: Initial time of which the simulation starts. If nothing it will default to the first timestamp of time series of the system.
Example
template_uc = template_unit_commitment()
template_ed = template_economic_dispatch()
my_decision_model_uc = DecisionModel(template_1, sys_uc, optimizer, name = "UC")
my_decision_model_ed = DecisionModel(template_ed, sys_ed, optimizer, name = "ED")
models = SimulationModels(
decision_models = [
my_decision_model_uc,
my_decision_model_ed
]
)
# The following sequence set the commitment variables (`OnVariable`) for `ThermalStandard` units from UC to ED.
sequence = SimulationSequence(;
models = models,
feedforwards = Dict(
"ED" => [
SemiContinuousFeedforward(;
component_type = ThermalStandard,
source = OnVariable,
affected_values = [ActivePowerVariable],
),
],
),
)
sim = Simulation(
sequence = sequence,
name = "Sim",
steps = 5,
models = models,
simulation_folder = mktempdir(cleanup=true),
)
PowerSimulations.Simulation
— MethodSimulation(directory::AbstractString, model_info::Dict)
Constructs Simulation from a serialized directory. Callers should pass any kwargs here that they passed to the original Simulation.
Arguments
directory::AbstractString
: the directory returned from the call to serializemodel_info::Dict
: Two-level dictionary containing model parameters that cannot be serialized. The outer dict should be keyed by the problem name. The inner dict must contain 'optimizer' and may contain 'jump_model'. These should be the same values used for the original simulation.
PowerSimulations.build!
— Methodbuild!(
sim::Simulation;
recorders,
console_level,
file_level,
serialize,
partitions,
index
) -> InfrastructureSystems.Simulation.SimulationBuildStatusModule.SimulationBuildStatus
Build the Simulation, problems and the related folder structure.
Arguments
sim::Simulation
: simulation objectrecorders::Vector{Symbol} = []
: recorder names to registerserialize::Bool = true
: serializes the simulation objects in the simulationconsole_level = Logging.Error
:file_level = Logging.Info
:
PowerSimulations.execute!
— Methodexecute!(
sim::Simulation;
kwargs...
) -> InfrastructureSystems.Simulation.RunStatusModule.RunStatus
Solves the simulation model for sequential Simulations.
Arguments
sim::Simulation=sim
: simulation object created by Simulation()
The optional keyword argument exports
controls exporting of results to CSV files as the simulation runs.
Example
sim = Simulation("Test", 7, problems, "/Users/folder")
execute!(sim::Simulation; kwargs...)
PowerSimulations.SimulationPartitions
— TypeDefines how a simulation can be partition into partitions and run in parallel.
PowerSimulations.get_num_partitions
— Methodget_num_partitions(x::SimulationPartitions) -> Int64
Return the number of partitions in the simulation.
PowerSimulations.run_parallel_simulation
— Methodrun_parallel_simulation(
build_function,
execute_function;
script,
output_dir,
name,
num_steps,
period,
num_overlap_steps,
num_parallel_processes,
exeflags,
force
)
Run a partitioned simulation in parallel on a local computer.
Arguments
build_function
: Function reference that returns a built Simulation.execute_function
: Function reference that executes a Simulation.script::AbstractString
: Path to script that includes $build_function$ and $execute_function$.output_dir::AbstractString
: Path for simulation outputsname::AbstractString
: Simulation namenum_steps::Integer
: Total number of steps in the simulationperiod::Integer
: Number of steps in each simulation partitionnum_overlap_steps::Integer
: Number of steps that each partition overlaps with the previous partitionnum_parallel_processes
: Number of partitions to run in parallel. If nothing, use the number of cores.exeflags
: Path to Julia project. Forwarded to Distributed.addprocs.force
: Overwrite the output directory if it already exists.
Chronology Models
PowerSimulations.InterProblemChronology
— TypeInterProblemChronology()
Type struct to select an information sharing model between stages that uses results from the most recent stage executed to calculate the initial conditions. This model takes into account solutions from stages defined with finer temporal resolutions
See also: IntraProblemChronology
PowerSimulations.IntraProblemChronology
— TypeIntraProblemChronology()
Type struct to select an information sharing model between stages that uses results from the same recent stage to calculate the initial conditions. This model ignores solutions from stages defined with finer temporal resolutions.
See also: InterProblemChronology
Variables
For a list of variables for each device refer to its Formulations page.
Common Variables
PowerSimulations.ActivePowerVariable
— TypeStruct to dispatch the creation of Active Power Variables
Docs abbreviation: $p$
PowerSimulations.ReactivePowerVariable
— TypeStruct to dispatch the creation of Reactive Power Variables
Docs abbreviation: $q$
PowerSimulations.PieceWiseLinearCostVariable
— TypeStruct to dispatch the creation of piecewise linear cost variables for objective function
Docs abbreviation: $\delta$
PowerSimulations.RateofChangeConstraintSlackUp
— TypeStruct to dispatch the creation of Slack variables for rate of change constraints up limits
Docs abbreviation: $p^\text{sl,up}$
PowerSimulations.RateofChangeConstraintSlackDown
— TypeStruct to dispatch the creation of Slack variables for rate of change constraints down limits
Docs abbreviation: $p^\text{sl,dn}$
Thermal Unit Variables
PowerSimulations.OnVariable
— TypeStruct to dispatch the creation of a binary commitment status variable
Docs abbreviation: $u$
PowerSimulations.StartVariable
— TypeStruct to dispatch the creation of Binary Start Variables
Docs abbreviation: $v$
PowerSimulations.StopVariable
— TypeStruct to dispatch the creation of Binary Stop Variables
Docs abbreviation: $w$
PowerSimulations.TimeDurationOn
— TypeAuxiliary Variable for Thermal Generation Models to keep track of time elapsed on
PowerSimulations.TimeDurationOff
— TypeAuxiliary Variable for Thermal Generation Models to keep track of time elapsed off
PowerSimulations.HotStartVariable
— TypeStruct to dispatch the creation of Hot Start Variable for Thermal units with temperature considerations
Docs abbreviation: $z^\text{th}$
PowerSimulations.WarmStartVariable
— TypeStruct to dispatch the creation of Warm Start Variable for Thermal units with temperature considerations
Docs abbreviation: $y^\text{th}$
PowerSimulations.ColdStartVariable
— TypeStruct to dispatch the creation of Cold Start Variable for Thermal units with temperature considerations
Docs abbreviation: $x^\text{th}$
PowerSimulations.PowerAboveMinimumVariable
— TypeStruct to dispatch the creation of Active Power Variables above minimum power for Thermal Compact formulations
Docs abbreviation: $\Delta p$
PowerSimulations.PowerOutput
— TypeAuxiliary Variable for Thermal Generation Models that solve for power above min
Storage Unit Variables
PowerSimulations.ReservationVariable
— TypeStruct to dispatch the creation of binary storage charge reservation variable
Docs abbreviation: $u^\text{st}$
PowerSimulations.EnergyVariable
— TypeStruct to dispatch the creation of a variable for energy storage level (state of charge)
Docs abbreviation: $e$
PowerSimulations.ActivePowerOutVariable
— TypeStruct to dispatch the creation of Active Power Output Variables for 2-directional devices. For instance storage or pump-hydro
Docs abbreviation: $p^\text{out}$
PowerSimulations.ActivePowerInVariable
— TypeStruct to dispatch the creation of Active Power Input Variables for 2-directional devices. For instance storage or pump-hydro
Docs abbreviation: $p^\text{in}$
Branches and Network Variables
PowerSimulations.FlowActivePowerVariable
— TypeStruct to dispatch the creation of bidirectional Active Power Flow Variables
Docs abbreviation: $f$
PowerSimulations.FlowActivePowerSlackUpperBound
— TypeStruct to dispatch the creation of active power flow upper bound slack variables. Used when there is not enough flow through the branch in the forward direction.
Docs abbreviation: $f^\text{sl,up}$
PowerSimulations.FlowActivePowerSlackLowerBound
— TypeStruct to dispatch the creation of active power flow lower bound slack variables. Used when there is not enough flow through the branch in the reverse direction.
Docs abbreviation: $f^\text{sl,lo}$
PowerSimulations.FlowActivePowerFromToVariable
— TypeStruct to dispatch the creation of unidirectional Active Power Flow Variables
Docs abbreviation: $f^\text{from-to}$
PowerSimulations.FlowActivePowerToFromVariable
— TypeStruct to dispatch the creation of unidirectional Active Power Flow Variables
Docs abbreviation: $f^\text{to-from}$
PowerSimulations.FlowReactivePowerFromToVariable
— TypeStruct to dispatch the creation of unidirectional Reactive Power Flow Variables
Docs abbreviation: $f^\text{q,from-to}$
PowerSimulations.FlowReactivePowerToFromVariable
— TypeStruct to dispatch the creation of unidirectional Reactive Power Flow Variables
Docs abbreviation: $f^\text{q,to-from}$
PowerSimulations.PhaseShifterAngle
— TypeStruct to dispatch the creation of Phase Shifters Variables
Docs abbreviation: $\theta^\text{shift}$
PowerSimulations.HVDCLosses
— TypeStruct to dispatch the creation of HVDC Losses Auxiliary Variables
Docs abbreviation: $\ell$
PowerSimulations.HVDCFlowDirectionVariable
— TypeStruct to dispatch the creation of HVDC Flow Direction Auxiliary Variables
Docs abbreviation: $u^\text{dir}$
PowerSimulations.VoltageMagnitude
— TypeStruct to dispatch the creation of Voltage Magnitude Variables for AC formulations
Docs abbreviation: $v$
PowerSimulations.VoltageAngle
— TypeStruct to dispatch the creation of Voltage Angle Variables for AC/DC formulations
Docs abbreviation: $\theta$
Services Variables
PowerSimulations.ActivePowerReserveVariable
— TypeStruct to dispatch the creation of Active Power Reserve Variables
Docs abbreviation: $r$
PowerSimulations.ServiceRequirementVariable
— TypeStruct to dispatch the creation of Service Requirement Variables
Docs abbreviation: $\text{req}$
PowerSimulations.SystemBalanceSlackUp
— TypeStruct to dispatch the creation of System-wide slack up variables. Used when there is not enough generation.
Docs abbreviation: $p^\text{sl,up}$
PowerSimulations.SystemBalanceSlackDown
— TypeStruct to dispatch the creation of System-wide slack down variables. Used when there is not enough load curtailment.
Docs abbreviation: $p^\text{sl,dn}$
PowerSimulations.ReserveRequirementSlack
— TypeStruct to dispatch the creation of Reserve requirement slack variables. Used when there is not reserves in the system to satisfy the requirement.
Docs abbreviation: $r^\text{sl}$
PowerSimulations.InterfaceFlowSlackUp
— TypeStruct to dispatch the creation of Interface Flow Slack Up variables
Docs abbreviation: $f^\text{sl,up}$
PowerSimulations.InterfaceFlowSlackDown
— TypeStruct to dispatch the creation of Interface Flow Slack Down variables
Docs abbreviation: $f^\text{sl,dn}$
Feedforward Variables
PowerSimulations.UpperBoundFeedForwardSlack
— TypeStruct to dispatch the creation of Slack variables for UpperBoundFeedforward
Docs abbreviation: $p^\text{ff,ubsl}$
PowerSimulations.LowerBoundFeedForwardSlack
— TypeStruct to dispatch the creation of Slack variables for LowerBoundFeedforward
Docs abbreviation: $p^\text{ff,lbsl}$
Constraints
Common Constraints
PowerSimulations.PieceWiseLinearCostConstraint
— TypeStruct to create the PieceWiseLinearCostConstraint associated with a specified variable.
See Piecewise linear cost functions for more information.
Network Constraints
PowerSimulations.CopperPlateBalanceConstraint
— TypeStruct to create the constraint to balance power in the copperplate model. For more information check Network Formulations.
The specified constraint is generally formulated as:
\[\sum_{c \in \text{components}} p_t^c = 0, \quad \forall t \in \{1, \dots, T\}\]
PowerSimulations.NodalBalanceActiveConstraint
— TypeStruct to create the constraint to balance active power in nodal formulation. For more information check Network Formulations.
The specified constraint depends on the network model chosen.
PowerSimulations.NodalBalanceReactiveConstraint
— TypeStruct to create the constraint to balance reactive power in nodal formulation. For more information check Network Formulations.
The specified constraint depends on the network model chosen.
PowerSimulations.AreaParticipationAssignmentConstraint
— TypeStruct to create the constraint to balance power across specified areas. For more information check Network Formulations.
The specified constraint is generally formulated as:
\[\sum_{c \in \text{components}_a} p_t^c = 0, \quad \forall a\in \{1,\dots, A\}, t \in \{1, \dots, T\}\]
Power Variable Limit Constraints
PowerSimulations.ActivePowerVariableLimitsConstraint
— TypeStruct to create the constraint to limit active power expressions. For more information check Device Formulations.
The specified constraint depends on the UpperBound and LowerBound expressions, but in its most basic formulation is of the form:
\[P^\text{min} \le p_t \le P^\text{max}, \quad \forall t \in \{1,\dots,T\}\]
PowerSimulations.ReactivePowerVariableLimitsConstraint
— TypeStruct to create the constraint to limit reactive power expressions. For more information check Device Formulations.
The specified constraint depends on the UpperBound and LowerBound expressions, but in its most basic formulation is of the form:
\[Q^\text{min} \le q_t \le Q^\text{max}, \quad \forall t \in \{1,\dots,T\}\]
PowerSimulations.ActivePowerVariableTimeSeriesLimitsConstraint
— TypeStruct to create the constraint to limit active power expressions by a time series parameter. For more information check Device Formulations.
The specified constraint depends on the UpperBound expressions, but in its most basic formulation is of the form:
\[p_t \le \text{ActivePowerTimeSeriesParameter}_t, \quad \forall t \in \{1,\dots,T\}\]
PowerSimulations.InputActivePowerVariableLimitsConstraint
— TypeStruct to create the constraint to limit active power input expressions. For more information check Device Formulations.
The specified constraint depends on the UpperBound and LowerBound expressions, but in its most basic formulation is of the form:
\[P^\text{min} \le p_t^\text{in} \le P^\text{max}, \quad \forall t \in \{1,\dots,T\}\]
PowerSimulations.OutputActivePowerVariableLimitsConstraint
— TypeStruct to create the constraint to limit active power output expressions. For more information check Device Formulations.
The specified constraint depends on the UpperBound and LowerBound expressions, but in its most basic formulation is of the form:
\[P^\text{min} \le p_t^\text{out} \le P^\text{max}, \quad \forall t \in \{1,\dots,T\}\]
Services Constraints
PowerSimulations.RequirementConstraint
— TypeStruct to create the constraint for satisfying active power reserve requirements. For more information check Service Formulations.
The constraint is as follows:
\[\sum_{d\in\mathcal{D}_s} r_{d,t} + r_t^\text{sl} \ge \text{Req},\quad \forall t\in \{1,\dots, T\} \quad \text{(for a ConstantReserve)} \\ \sum_{d\in\mathcal{D}_s} r_{d,t} + r_t^\text{sl} \ge \text{RequirementTimeSeriesParameter}_{t},\quad \forall t\in \{1,\dots, T\} \quad \text{(for a VariableReserve)}\]
PowerSimulations.ParticipationFractionConstraint
— TypeStruct to create the constraint to participation assignments limits in the active power reserves. For more information check Service Formulations.
The constraint is as follows:
\[r_{d,t} \le \text{Req} \cdot \text{PF} ,\quad \forall d\in \mathcal{D}_s, \forall t\in \{1,\dots, T\} \quad \text{(for a ConstantReserve)} \\ r_{d,t} \le \text{RequirementTimeSeriesParameter}_{t} \cdot \text{PF}\quad \forall d\in \mathcal{D}_s, \forall t\in \{1,\dots, T\}, \quad \text{(for a VariableReserve)}\]
PowerSimulations.ReservePowerConstraint
— TypeStruct to create the constraint for ensuring that NonSpinning Reserve can be delivered from turn-off thermal units.
For more information check Service Formulations for NonSpinningReserve.
The constraint is as follows:
\[r_{d,t} \le (1 - u_{d,t}^\text{th}) \cdot R^\text{limit}_d, \quad \forall d \in \mathcal{D}_s, \forall t \in \{1,\dots, T\}\]
Thermal Unit Constraints
PowerSimulations.ActiveRangeICConstraint
— TypeStruct to create the constraint for starting up ThermalMultiStart units. For more information check ThermalGen Formulations for ThermalMultiStartUnitCommitment.
The specified constraint is formulated as:
\[\max\{P^\text{th,max} - P^\text{th,shdown}, 0\} \cdot w_1^\text{th} \le u^\text{th,init} (P^\text{th,max} - P^\text{th,min}) - P^\text{th,init}\]
PowerSimulations.CommitmentConstraint
— TypeStruct to create the commitment constraint between the on, start, and stop variables. For more information check ThermalGen Formulations.
The specified constraints are formulated as:
\[u_1^\text{th} = u^\text{th,init} + v_1^\text{th} - w_1^\text{th} \\ u_t^\text{th} = u_{t-1}^\text{th} + v_t^\text{th} - w_t^\text{th}, \quad \forall t \in \{2,\dots,T\} \\ v_t^\text{th} + w_t^\text{th} \le 1, \quad \forall t \in \{1,\dots,T\}\]
PowerSimulations.DurationConstraint
— TypeStruct to create the duration constraint for commitment formulations, i.e. min-up and min-down.
For more information check ThermalGen Formulations.
PowerSimulations.RampConstraint
— TypeStruct to create the RampConstraint associated with a specified thermal device or reserve service.
For thermal units, see more information in Thermal Formulations. The constraint is as follows:
\[-R^\text{th,dn} \le p_t^\text{th} - p_{t-1}^\text{th} \le R^\text{th,up}, \quad \forall t\in \{1, \dots, T\}\]
For Ramp Reserve, see more information in Service Formulations. The constraint is as follows:
\[r_{d,t} \le R^\text{th,up} \cdot \text{TF}\quad \forall d\in \mathcal{D}_s, \forall t\in \{1,\dots, T\}, \quad \text{(for ReserveUp)} \\ r_{d,t} \le R^\text{th,dn} \cdot \text{TF}\quad \forall d\in \mathcal{D}_s, \forall t\in \{1,\dots, T\}, \quad \text{(for ReserveDown)}\]
PowerSimulations.StartupInitialConditionConstraint
— TypeStruct to create the start-up initial condition constraints for ThermalMultiStart.
For more information check ThermalGen Formulations for ThermalMultiStartUnitCommitment.
PowerSimulations.StartupTimeLimitTemperatureConstraint
— TypeStruct to create the start-up time limit constraints for ThermalMultiStart.
For more information check ThermalGen Formulations for ThermalMultiStartUnitCommitment.
Renewable Unit Constraints
PowerSimulations.EqualityConstraint
— TypeStruct to create the constraint that sets the reactive power to the power factor in the RenewableConstantPowerFactor formulation for renewable units.
For more information check RenewableGen Formulations.
The specified constraint is formulated as:
\[q_t^\text{re} = \text{pf} \cdot p_t^\text{re}, \quad \forall t \in \{1,\dots, T\}\]
Branches Constraints
PowerSimulations.FlowLimitConstraint
— TypeStruct to create the constraint that set the flow limits through a PhaseShiftingTransformer.
For more information check Branch Formulations.
The specified constraint is formulated as:
\[-R^\text{max} \le f_t \le R^\text{max}, \quad \forall t \in \{1,\dots,T\}\]
PowerSimulations.FlowRateConstraint
— TypeStruct to create the constraint that set the flow limits through an HVDC two-terminal branch.
For more information check Branch Formulations.
The specified constraint is formulated as:
\[R^\text{min} \le f_t \le R^\text{max}, \quad \forall t \in \{1,\dots,T\}\]
PowerSimulations.FlowRateConstraintFromTo
— TypeStruct to create the constraint that set the flow from-to limits through an HVDC two-terminal branch.
For more information check Branch Formulations.
The specified constraint is formulated as:
\[R^\text{from,min} \le f_t^\text{from-to} \le R^\text{from,max}, \forall t \in \{1,\dots, T\}\]
PowerSimulations.FlowRateConstraintToFrom
— TypeStruct to create the constraint that set the flow to-from limits through an HVDC two-terminal branch.
For more information check Branch Formulations.
The specified constraint is formulated as:
\[R^\text{to,min} \le f_t^\text{to-from} \le R^\text{to,max},\quad \forall t \in \{1,\dots, T\}\]
PowerSimulations.HVDCPowerBalance
— TypeStruct to create the constraints that set the power balance across a lossy HVDC two-terminal line.
For more information check Branch Formulations.
The specified constraints are formulated as:
\[\begin{align*} & f_t^\text{to-from} - f_t^\text{from-to} \le L_1 \cdot f_t^\text{to-from} - L_0,\quad \forall t \in \{1,\dots, T\} \\ & f_t^\text{from-to} - f_t^\text{to-from} \ge L_1 \cdot f_t^\text{from-to} + L_0,\quad \forall t \in \{1,\dots, T\} \\ & f_t^\text{from-to} - f_t^\text{to-from} \ge - M^\text{big} (1 - u^\text{dir}_t),\quad \forall t \in \{1,\dots, T\} \\ & f_t^\text{to-from} - f_t^\text{from-to} \ge - M^\text{big} u^\text{dir}_t,\quad \forall t \in \{1,\dots, T\} \\ \end{align*}\]
PowerSimulations.NetworkFlowConstraint
— TypeStruct to create the constraint the AC branch flows depending on the network model. For more information check Branch Formulations.
The specified constraint depends on the network model chosen. The most common application is the StaticBranch in a PTDF Network Model:
\[f_t = \sum_{i=1}^N \text{PTDF}_{i,b} \cdot \text{Bal}_{i,t}, \quad \forall t \in \{1,\dots, T\}\]
PowerSimulations.RateLimitConstraint
— TypeStruct to create the constraint that set the AC flow limits through branches.
For more information check Branch Formulations.
The specified constraint is formulated as:
\[\begin{align*} & f_t - f_t^\text{sl,up} \le R^\text{max},\quad \forall t \in \{1,\dots, T\} \\ & f_t + f_t^\text{sl,lo} \ge -R^\text{max},\quad \forall t \in \{1,\dots, T\} \end{align*}\]
PowerSimulations.PhaseAngleControlLimit
— TypeStruct to create the constraint that set the angle limits through a PhaseShiftingTransformer.
For more information check Branch Formulations.
The specified constraint is formulated as:
\[\Theta^\text{min} \le \theta^\text{shift}_t \le \Theta^\text{max}, \quad \forall t \in \{1,\dots,T\}\]
Feedforward Constraints
PowerSimulations.FeedforwardSemiContinuousConstraint
— TypeStruct to create the constraint for semicontinuous feedforward limits.
For more information check Feedforward Formulations.
The specified constraint is formulated as:
\[\begin{align*} & \text{ActivePowerRangeExpressionUB}_t := p_t^\text{th} - \text{on}_t^\text{th}P^\text{th,max} \le 0, \quad \forall t\in \{1, \dots, T\} \\ & \text{ActivePowerRangeExpressionLB}_t := p_t^\text{th} - \text{on}_t^\text{th}P^\text{th,min} \ge 0, \quad \forall t\in \{1, \dots, T\} \end{align*}\]
PowerSimulations.FeedforwardUpperBoundConstraint
— TypeStruct to create the constraint for upper bound feedforward limits.
For more information check Feedforward Formulations.
The specified constraint is formulated as:
\[\begin{align*} & \text{AffectedVariable}_t - p_t^\text{ff,ubsl} \le \text{SourceVariableParameter}_t, \quad \forall t \in \{1,\dots, T\} \end{align*}\]
PowerSimulations.FeedforwardLowerBoundConstraint
— TypeStruct to create the constraint for lower bound feedforward limits.
For more information check Feedforward Formulations.
The specified constraint is formulated as:
\[\begin{align*} & \text{AffectedVariable}_t + p_t^\text{ff,lbsl} \ge \text{SourceVariableParameter}_t, \quad \forall t \in \{1,\dots, T\} \end{align*}\]
Parameters
Time Series Parameters
PowerSimulations.ActivePowerTimeSeriesParameter
— TypeParameter to define active power time series
PowerSimulations.ReactivePowerTimeSeriesParameter
— TypeParameter to define reactive power time series
PowerSimulations.RequirementTimeSeriesParameter
— TypeParameter to define requirement time series
Variable Value Parameters
PowerSimulations.UpperBoundValueParameter
— TypeParameter to define variable upper bound
PowerSimulations.LowerBoundValueParameter
— TypeParameter to define variable lower bound
PowerSimulations.OnStatusParameter
— TypeParameter to define unit commitment status
PowerSimulations.FixValueParameter
— TypeParameter to FixValueParameter
Objective Function Parameters
PowerSimulations.CostFunctionParameter
— TypeParameter to define cost function coefficient
Results
Acessing Optimization Model
PowerSimulations.serialize_optimization_model
— Methodserialize_optimization_model(
container::PowerSimulations.OptimizationContainer,
save_path::String
)
Exports the OpModel JuMP object in MathOptFormat
PowerSimulations.get_all_constraint_index
— Methodget_all_constraint_index(
model::PowerSimulations.OperationModel
) -> Vector{Tuple{InfrastructureSystems.Optimization.ConstraintKey, Int64, Int64}}
Each Tuple corresponds to (conname, internalindex, moi_index)
PowerSimulations.get_all_variable_index
— Methodget_all_variable_index(
model::PowerSimulations.OperationModel
) -> Vector{Tuple{Symbol, Int64, Int64}}
Each Tuple corresponds to (conname, internalindex, moi_index)
Accessing Problem Results
InfrastructureSystems.Optimization.OptimizationProblemResults
— MethodOptimizationProblemResults(
model::DecisionModel
) -> OptimizationProblemResults
Construct OptimizationProblemResults from a solved DecisionModel.
InfrastructureSystems.Optimization.OptimizationProblemResults
— MethodOptimizationProblemResults(
model::EmulationModel
) -> OptimizationProblemResults
Construct OptimizationProblemResults from a solved EmulationModel.
Accessing Simulation Results
PowerSimulations.SimulationResults
— TypeSimulationResults(
path::AbstractString,
name::AbstractString;
...
) -> SimulationResults
SimulationResults(
path::AbstractString,
name::AbstractString,
execution;
ignore_status
) -> SimulationResults
Construct SimulationResults from a simulation output directory.
Arguments
path::AbstractString
: Simulation output directoryname::AbstractString
: Simulation nameexecution::AbstractString
: Execution number. Default is the most recent.ignore_status::Bool
: If true, return results even if the simulation failed.
PowerSimulations.SimulationResults
— MethodSimulationResults(
sim::Simulation;
ignore_status,
kwargs...
) -> SimulationResults
Construct SimulationResults from a simulation.
InfrastructureSystems.Optimization.export_results
— Methodexport_results(results::SimulationResults, exports)
Export results to files in the results directory.
Arguments
results::SimulationResults
: simulation resultsexports
: SimulationResultsExport or anything that can be passed to its constructor. (such as Dict or path to JSON file)
An example JSON file demonstrating possible options is below. Note that start_time
, end_time
, path
, and format
are optional.
{
"decision_models": [
{
"name": "ED",
"variables": [
"P__ThermalStandard",
],
"parameters": [
"all"
]
},
{
"name": "UC",
"variables": [
"On__ThermalStandard"
],
"parameters": [
"all"
],
"duals": [
"all"
]
}
],
"start_time": "2020-01-01T04:00:00",
"end_time": null,
"path": null,
"format": "csv"
}
InfrastructureSystems.Optimization.read_aux_variable
— Methodread_aux_variable(
res::PowerSimulations.SimulationProblemResults{PowerSimulations.DecisionModelSimulationResults},
args...;
initial_time,
count,
store
) -> SortedDict{Any, Any, Base.Order.ForwardOrdering}
Return the values for the requested auxillary variables. It keeps requests when performing multiple retrievals.
Arguments
args
: Can be a string returned fromlist_aux_variable_names
or args that can be splatted into a AuxVarKey.initial_time::Dates.DateTime
: initial of the requested resultscount::Int
: Number of results
InfrastructureSystems.Optimization.read_dual
— Methodread_dual(
res::PowerSimulations.SimulationProblemResults{PowerSimulations.DecisionModelSimulationResults},
args...;
initial_time,
count,
store
) -> SortedDict{Any, Any, Base.Order.ForwardOrdering}
Return the values for the requested dual. It keeps requests when performing multiple retrievals.
Arguments
args
: Can be a string returned fromlist_dual_names
or args that can be splatted into a ConstraintKey.initial_time::Dates.DateTime
: initial of the requested resultscount::Int
: Number of resultsstore::SimulationStore
: a store that has been opened for reading
InfrastructureSystems.Optimization.read_expression
— Methodread_expression(
res::PowerSimulations.SimulationProblemResults{PowerSimulations.DecisionModelSimulationResults},
args...;
initial_time,
count,
store
) -> SortedDict{Any, Any, Base.Order.ForwardOrdering}
Return the values for the requested auxillary variables. It keeps requests when performing multiple retrievals.
Arguments
args
: Can be a string returned fromlist_expression_names
or args that can be splatted into a ExpressionKey.initial_time::Dates.DateTime
: initial of the requested resultscount::Int
: Number of results
InfrastructureSystems.Optimization.read_parameter
— Methodread_parameter(
res::PowerSimulations.SimulationProblemResults{PowerSimulations.DecisionModelSimulationResults},
args...;
initial_time,
count,
store
) -> SortedDict{Any, Any, Base.Order.ForwardOrdering}
Return the values for the requested parameter. It keeps requests when performing multiple retrievals.
Arguments
args
: Can be a string returned fromlist_parameter_names
or args that can be splatted into a ParameterKey.initial_time::Dates.DateTime
: initial of the requested resultscount::Int
: Number of results
InfrastructureSystems.Optimization.read_variable
— Methodread_variable(
res::PowerSimulations.SimulationProblemResults{PowerSimulations.DecisionModelSimulationResults},
args...;
initial_time,
count,
store
) -> SortedDict{Any, Any, Base.Order.ForwardOrdering}
Return the values for the requested variable. It keeps requests when performing multiple retrievals.
Arguments
args
: Can be a string returned fromlist_variable_names
or args that can be splatted into a VariableKey.initial_time::Dates.DateTime
: initial of the requested resultscount::Int
: Number of resultsstore::SimulationStore
: a store that has been opened for reading
Examples
read_variable(results, ActivePowerVariable, ThermalStandard)
read_variable(results, "ActivePowerVariable__ThermalStandard")
PowerSimulations.list_decision_problems
— Methodlist_decision_problems(
results::SimulationResults
) -> Vector{String}
Return the problem names in the simulation.
PowerSimulations.load_results!
— Methodload_results!(
res::PowerSimulations.SimulationProblemResults{PowerSimulations.DecisionModelSimulationResults},
count::Int64;
initial_time,
variables,
duals,
parameters,
aux_variables,
expressions,
store
)
Load the simulation results into memory for repeated reads. This is useful when loading results from remote locations over network connections, when reading the same data very many times, etc. Multiple calls augment the cache according to these rules, where "variable" means "variable, expression, etc.":
- Requests for an already cached variable at a lesser
count
than already cached do not decrease thecount
of the cached variable - Requests for an already cached variable at a greater
count
than already cached do increase thecount
of the cached variable - Requests for new variables are fulfilled without evicting existing variables
Note that count
is global across all variables, so increasing the count
re-reads already cached variables. For each variable, each element must be the name encoded as a string, like "ActivePowerVariable__ThermalStandard"
or a Tuple with its constituent types, like (ActivePowerVariable, ThermalStandard)
. To clear the cache, use Base.empty!
.
Arguments
count::Int
: Number of windows to load.initial_time::Dates.DateTime
: Initial time of first window to load. Defaults to first.aux_variables::Vector{Union{String, Tuple}}
: Optional list of aux variables to load.duals::Vector{Union{String, Tuple}}
: Optional list of duals to load.expressions::Vector{Union{String, Tuple}}
: Optional list of expressions to load.parameters::Vector{Union{String, Tuple}}
: Optional list of parameters to load.variables::Vector{Union{String, Tuple}}
: Optional list of variables to load.
PowerSimulations.load_results!
— Methodload_results!(
res::PowerSimulations.SimulationProblemResults{PowerSimulations.EmulationModelSimulationResults};
aux_variables,
duals,
expressions,
parameters,
variables
)
Load the simulation results into memory for repeated reads. This is useful when loading results from remote locations over network connections.
For each variable/parameter/dual, etc., each element must be the name encoded as a string, like "ActivePowerVariable__ThermalStandard"
or a Tuple with its constituent types, like
(ActivePowerVariable, ThermalStandard)`.
Arguments
aux_variables::Vector{Union{String, Tuple}}
: Optional list of aux variables to load.duals::Vector{Union{String, Tuple}}
: Optional list of duals to load.expressions::Vector{Union{String, Tuple}}
: Optional list of expressions to load.parameters::Vector{Union{String, Tuple}}
: Optional list of parameters to load.variables::Vector{Union{String, Tuple}}
: Optional list of variables to load.
InfrastructureSystems.Optimization.get_timestamps
— Methodget_timestamps(
result::PowerSimulations.SimulationProblemResults
) -> StepRange{Dates.DateTime, Dates.Millisecond}
Return a reference to a StepRange of available timestamps.
InfrastructureSystems.Optimization.list_aux_variable_names
— Methodlist_aux_variable_names(
res::PowerSimulations.SimulationProblemResults
) -> Vector{String}
Return an array of auxillary variable names (strings) that are available for reads.
InfrastructureSystems.Optimization.list_dual_names
— Methodlist_dual_names(
res::PowerSimulations.SimulationProblemResults
) -> Vector{String}
Return an array of dual names (strings) that are available for reads.
InfrastructureSystems.Optimization.list_expression_names
— Methodlist_expression_names(
res::PowerSimulations.SimulationProblemResults
) -> Vector{String}
Return an array of expression names (strings) that are available for reads.
InfrastructureSystems.Optimization.list_parameter_names
— Methodlist_parameter_names(
res::PowerSimulations.SimulationProblemResults
) -> Vector{String}
Return an array of parmater names (strings) that are available for reads.
InfrastructureSystems.Optimization.list_variable_names
— Methodlist_variable_names(
res::PowerSimulations.SimulationProblemResults
) -> Vector{String}
Return an array of variable names (strings) that are available for reads.
InfrastructureSystems.Optimization.read_optimizer_stats
— Methodread_optimizer_stats(
res::PowerSimulations.SimulationProblemResults;
store
) -> Any
Return the optimizer stats for the problem as a DataFrame.
Accepted keywords
store::SimulationStore
: a store that has been opened for reading
PowerSimulations.get_system!
— Methodget_system!(
results::Union{OptimizationProblemResults, PowerSimulations.SimulationProblemResults};
kwargs...
) -> Union{Nothing, InfrastructureSystems.InfrastructureSystemsType}
Return the system used for the problem. If the system hasn't already been deserialized or set with set_system!
then deserialize and store it.
If the simulation was configured to serialize all systems to file then the returned system will include all data. If that was not configured then the returned system will include all data except time series data.
PowerSimulations.read_realized_aux_variable
— Methodread_realized_aux_variable(
res::PowerSimulations.SimulationProblemResults,
aux_variable::AbstractString;
kwargs...
) -> Any
Return the final values for the requested auxiliary variable for each time step for a problem.
Refer to read_realized_variable
for help and examples.
PowerSimulations.read_realized_aux_variables
— Methodread_realized_aux_variables(
res::PowerSimulations.SimulationProblemResults;
kwargs...
) -> Dict
Return the final values for the requested auxiliary variables for each time step for a problem.
Refer to read_realized_aux_variables
for help and examples.
PowerSimulations.read_realized_dual
— Methodread_realized_dual(
res::PowerSimulations.SimulationProblemResults,
dual::AbstractString;
kwargs...
) -> Any
Return the final values for the requested dual for each time step for a problem.
Refer to read_realized_variable
for help and examples.
PowerSimulations.read_realized_duals
— Methodread_realized_duals(
res::PowerSimulations.SimulationProblemResults;
kwargs...
) -> Dict
Return the final values for the requested duals for each time step for a problem.
Refer to read_realized_duals
for help and examples.
PowerSimulations.read_realized_expression
— Methodread_realized_expression(
res::PowerSimulations.SimulationProblemResults,
expression::AbstractString;
kwargs...
) -> Any
Return the final values for the requested expression for each time step for a problem.
Refer to read_realized_variable
for help and examples.
PowerSimulations.read_realized_expressions
— Methodread_realized_expressions(
res::PowerSimulations.SimulationProblemResults;
kwargs...
) -> Dict
Return the final values for the requested expressions for each time step for a problem.
Refer to read_realized_expressions
for help and examples.
PowerSimulations.read_realized_parameter
— Methodread_realized_parameter(
res::PowerSimulations.SimulationProblemResults,
parameter::AbstractString;
kwargs...
) -> Any
Return the final values for the requested parameter for each time step for a problem.
Refer to read_realized_variable
for help and examples.
PowerSimulations.read_realized_parameters
— Methodread_realized_parameters(
res::PowerSimulations.SimulationProblemResults;
kwargs...
) -> Dict
Return the final values for the requested parameters for each time step for a problem.
Refer to read_realized_parameters
for help and examples.
PowerSimulations.read_realized_variable
— Methodread_realized_variable(
res::PowerSimulations.SimulationProblemResults,
variable::AbstractString;
kwargs...
) -> Any
Return the final values for the requested variable for each time step for a problem.
Decision problem results are returned in a Dict{DateTime, DataFrame}.
Emulation problem results are returned in a DataFrame.
Limit the data sizes returned by specifying initial_time
and count
for decision problems or start_time
and len
for emulation problems.
See also load_results!
to preload data into memory.
Arguments
variable::Union{String, Tuple}
: Variable name as a string or a Tuple with variable type and device type.initial_time::Dates.DateTime
: Initial time of the requested results. Decision problems only.count::Int
: Number of results. Decision problems only.start_time::Dates.DateTime
: Start time of the requested results. Emulation problems only.len::Int
: Number of rows in each DataFrame. Emulation problems only.
Examples
julia > read_realized_variable(results, "ActivePowerVariable__ThermalStandard")
julia > read_realized_variable(results, (ActivePowerVariable, ThermalStandard))
PowerSimulations.read_realized_variables
— Methodread_realized_variables(
res::PowerSimulations.SimulationProblemResults;
kwargs...
) -> Dict
Return the final values for the requested variables for each time step for a problem.
Decision problem results are returned in a Dict{String, Dict{DateTime, DataFrame}}.
Emulation problem results are returned in a Dict{String, DataFrame}.
Limit the data sizes returned by specifying initial_time
and count
for decision problems or start_time
and len
for emulation problems.
If the Julia process is started with multiple threads, the code will read the variables in parallel.
See also load_results!
to preload data into memory.
Arguments
variables::Vector{Union{String, Tuple}}
: Variable name as a string or a Tuple with variable type and device type. If not provided then return all variables.initial_time::Dates.DateTime
: Initial time of the requested results. Decision problems only.count::Int
: Number of results. Decision problems only.start_time::Dates.DateTime
: Start time of the requested results. Emulation problems only.len::Int
: Number of rows in each DataFrame. Emulation problems only.
Examples
julia > variables_as_strings =
["ActivePowerVariable__ThermalStandard", "ActivePowerVariable__RenewableDispatch"]
julia > variables_as_types =
[(ActivePowerVariable, ThermalStandard), (ActivePowerVariable, RenewableDispatch)]
julia > read_realized_variables(results, variables_as_strings)
julia > read_realized_variables(results, variables_as_types)
PowerSimulations.set_system!
— Methodset_system!(
results::PowerSimulations.SimulationProblemResults,
system::AbstractString
)
Set the system in the results instance.
Throws InvalidValue if the system UUID is incorrect.
Arguments
results::SimulationProblemResults
: Results objectsystem::AbstractString
: Path to the system json file
Examples
julia > set_system!(res, "my_path/system_data.json")
PowerSimulations.SimulationPartitionResults
— TypeHandles merging of simulation partitions
InfrastructureSystems.Optimization.read_optimizer_stats
— Methodread_optimizer_stats(
store::PowerSimulations.HdfSimulationStore,
model_name
) -> Any
Return the optimizer stats for a problem as a DataFrame.
InfrastructureSystems.Optimization.read_optimizer_stats
— Methodread_optimizer_stats(
store::PowerSimulations.HdfSimulationStore,
simulation_step::Int64,
model_name::Symbol,
execution_index::Int64
) -> Any
Read the optimizer stats for a problem execution.
Simulation Recorder
PowerSimulations.list_simulation_events
— Methodlist_simulation_events(
::Type{T<:InfrastructureSystems.AbstractRecorderEvent},
output_dir::AbstractString;
...
) -> Vector{T} where T<:PowerSimulations.AbstractSimulationStatusEvent
list_simulation_events(
::Type{T<:InfrastructureSystems.AbstractRecorderEvent},
output_dir::AbstractString,
filter_func::Union{Nothing, Function};
step,
model_name
) -> Vector{T} where T<:PowerSimulations.AbstractSimulationStatusEvent
list_simulation_events(
::Type{T},
output_dir::AbstractString,
filter_func::Union{Nothing, Function} = nothing;
step = nothing,
model = nothing,
) where {T <: IS.AbstractRecorderEvent}
List simulation events of type T in a simulation output directory.
Arguments
output_dir::AbstractString
: Simulation output directoryfilter_func::Union{Nothing, Function} = nothing
: Refer toshow_simulation_events
.step::Int = nothing
: Filter events by step. Required if model is passed.model::Int = nothing
: Filter events by model.
PowerSimulations.show_recorder_events
— Methodshow_recorder_events(
::Type{T<:InfrastructureSystems.AbstractRecorderEvent},
filename::AbstractString;
...
)
show_recorder_events(
::Type{T<:InfrastructureSystems.AbstractRecorderEvent},
filename::AbstractString,
filter_func::Union{Nothing, Function};
wall_time,
kwargs...
)
show_recorder_events(
::Type{T},
filename::AbstractString,
filter_func::Union{Nothing, Function} = nothing;
wall_time = false,
kwargs...,
) where {T <: IS.AbstractRecorderEvent}
Show the events of type T in a recorder file.
Arguments
::Type{T}
: Recorder event typefilename::AbstractString
: recorder filenamefilter_func::Union{Nothing, Function} = nothing
: Optional function that accepts an event of type T and returns a Bool. Apply this function to each event and only return events where the result is true.wall_time = false
: If true, show the wall_time timestamp.
PowerSimulations.show_simulation_events
— Methodshow_simulation_events(
::Type{T<:InfrastructureSystems.AbstractRecorderEvent},
output_dir::AbstractString;
...
)
show_simulation_events(
::Type{T<:InfrastructureSystems.AbstractRecorderEvent},
output_dir::AbstractString,
filter_func::Union{Nothing, Function};
step,
model,
wall_time,
kwargs...
)
show_simulation_events(
::Type{T},
output_dir::AbstractString,
filter_func::Union{Nothing,Function} = nothing;
step = nothing,
model = nothing,
wall_time = false,
kwargs...,
) where { T <: IS.AbstractRecorderEvent}
Show all simulation events of type T in a simulation output directory.
Arguments
::Type{T}
: Recorder event typeoutput_dir::AbstractString
: Simulation output directoryfilter_func::Union{Nothing, Function} = nothing
: Refer toshow_recorder_events
.step::Int = nothing
: Filter events by step. Required if model is passed.model::Int = nothing
: Filter events by model.wall_time = false
: If true, show the wall_time timestamp.